Metronomic cyclophosphamide enhances HPV16E7 peptide vaccine induced antigen-specific and cytotoxic T-cell mediated antitumor immune response
نویسندگان
چکیده
In clinical trials, metronomic cyclophosphamide (CPA) is increasingly being combined with vaccines to reduce tumor-induced immune suppression. Previous strategies to modulate the immune system during vaccination have involved continuous administration of low dose chemotherapy, studies that have posed unique considerations for clinical trial design. Here, we evaluated metronomic CPA in combination with a peptide vaccine targeting HPV16E7 in an HPV16-induced tumor model, focusing on the cytotoxic T-cell response and timing of low dose metronomic CPA (mCPA) treatment relative to vaccination. Mice bearing C3 tumors were given metronomic CPA on alternating weeks in combination with immunization with a DepoVax vaccine containing HPV16E749-57 peptide antigen every 3 weeks. Only the combination therapy provided significant long-term control of tumor growth. The efficacy of the vaccine was uncompromised if given at the beginning or end of a cycle of metronomic CPA. Metronomic CPA had a pronounced lymphodepletive effect on the vaccine draining lymph node, yet did not reduce the development of antigen-specific CD8+ T cells induced by vaccination. This enrichment correlated with increased cytotoxic activity in the spleen and increased expression of cytotoxic gene signatures in the tumor. Immunity could be passively transferred through CD8+ T cells isolated from tumor-bearing mice treated with the combinatorial treatment regimen. A comprehensive survey of splenocytes indicated that metronomic CPA, in the absence of vaccination, induced transient lymphodepletion marked by a selective expansion of myeloid-derived suppressor cells. These results provide important insights into the multiple mechanisms of metronomic CPA induced immune modulation in the context of a peptide cancer vaccine that may be translated into more effective clinical trial designs.
منابع مشابه
Multi-modal treatment with peptide vaccine, metronomic cyclophosphamide and anti-PD1 monoclonal antibody provides effective control of tumors in multiple models
Future cancer immunotherapies will combine multiple treatments to improve immune responses to cancer through synergistic, multi-modal mechanisms. In a Phase I clinical trial, we found that the immune response to a peptide vaccine targeting survivin, DPX-Survivac, by ovarian cancer patients can be improved by combination therapy with metronomic cyclophosphamide (mCPA). Pre-clinical studies in mi...
متن کاملAnti-PD-1 increases the clonality and activity of tumor infiltrating antigen specific T cells induced by a potent immune therapy consisting of vaccine and metronomic cyclophosphamide
BACKGROUND Future cancer immunotherapies will combine multiple treatments to generate functional immune responses to cancer antigens through synergistic, multi-modal mechanisms. In this study we explored the combination of three distinct immunotherapies: a class I restricted peptide-based cancer vaccine, metronomic cyclophosphamide (mCPA) and anti-PD-1 treatment in a murine tumor model expressi...
متن کاملAntitumor Response to a Codon-Optimized HPV-16 E7/HSP70 Fusion Antigen DNA Vaccine
Background: Vaccines based on virus-like particles are effective against Human Papilloma Virus (HPV) infection; however, they have not shown a therapeutic effect against HPV-associated diseases. New immunotherapy strategies based on immune responses against tumor antigens can positively affect the clearance of HPV-associated lesions. Objective: To generate two therapeutic fusion DNA vaccines (o...
متن کاملStrategies for Enhancing Vaccine-Induced CTL Antitumor Immune Responses
Vaccine-induced cytotoxic T lymphocytes (CTLs) play a critical role in adaptive immunity against cancers. An important goal of current vaccine research is to induce durable and long-lasting functional CTLs that can mediate cytotoxic effects on tumor cells. To attain this goal, there are four distinct steps that must be achieved. To initiate a vaccine-induced CTL antitumor immune response, dendr...
متن کاملSurvivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients
DepoVax™ is an innovative and strongly immunogenic vaccine platform. Survivin is highly expressed in many tumor types and has reported prognostic value. To generate tumor-specific immune response, a novel cancer vaccine was formulated in DepoVax platform (DPX-Survivac) using survivin HLA class I peptides. Safety and immune potency of DPX-Survivac was tested in combination with immune-modulator ...
متن کامل